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Der Zusammenhang zwischen den Variationsprinzipien
der projektiven und der vierdimensionalen Relativitatstheorie

Von GONTHER LubDwiG

Aus dem Institut fiir theoretische Physik der Universitdt Gottingen

(Z. Naturforschg. 2a, 3—5 [1947]; eingegangen am 30. Aug. 1946)

Es wird gezeigt, dall sich jedes Gleichungssystem, das man als Eulersche Gleichungen
eines fiinfdimensionalen Variationsprinzips der projektiven Relativitéitstheorie erhilt, sich
ebenfalls aus einem entsprechenden vierdimensionalen Variationsprinzip herleiten 1ift.

achdem die projektive Relativitédtstheorie

durch die Arbeiten von W. Pauli?! in ihrer
Form einen gewissen Abschlufl erreicht hatte,
wurde neuerdings von P. Jordan? eine Erwei-
terung dieser Theorie gegeben, die darauf beruht,
dafB die projektive Invariante

J=g,, X" X", (ur=01,...4 ()

die bisher immer gleich 1 gesetzt wurde, als Funk-
tion der Koordinaten X¥ angesehen wird. Es 140t
sich dann J bis auf konstante Faktoren als Gravi-
tations-,,Konstante” deuten, die dann keine Kon-
stante mehr ist, sondern eine Feldfunktion. Dies
ist von besonderer Bedeutung fiir die Entwick-
lung des Weltalls?,

Zur Aufstellung von Feldgleichungen geht man,
wie es bisher in der allgemeinen Relativitéts-
theorie iiblich war, von einem Variationsprinzip

6 fQdr=0 LV —gdr=0 @)

aus, wobei L eine projektive Invariante, ¢ =
LV —g eine Invariantendichte ist. Wie iiblich, ist

g=Det|g,,|; dv=dX"dX'...dX*. (3)

In (2) istV — g geschrieben, da g negativ ist.
Setzt man in (2) speziell L = R, dem projektiven
Kriimmungsskalar, so erh#lt man als Euler-
sche Gleichungen des Variationsprinzips (2) die
Feldgleichungen des Vakuums 2:

R/l vy /s guv]{ =0, 4)

1 W.Pauli, Ann. Physik V, 18, 305 ff. [1933].
2P.Jordanu Cl.Miiller, Z. Naturforschg. 2a.
1 [1947].

wobei R, ,der verjingte Kriimmungstensor ist.
Durch Verjiingen von (4) folgt B =0 und damit
aus (4):

1&‘” 1,:0. (5)

Durch Ubergang zur affinen Geometrie findet
man aus (5) die Feldgleichungen fiir die Gravi-
tationspotentiale g,,, die elektromagnetischen Po-
tentiale ¢, und die Gravitations-,, Konstante »?:
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4 +
Hierbei sind B und R;, der Kriimmungsskalar
bzw. verjiingte Kriimmungstensor der vierdimen-
sionalen affinen Geometrie. F',, sind die elektro-
magnetischen Feldstirken:

B =% % 9)

Iis ist nun bemerkenswert, dafl man jedes

Variationsprinzip (2) in ein vierdimensionales
affines iiberfilhren kann, so dal man z.B. die
Feldgleichungen (6) bis (8) auch direkt aus
einem vierdimensionalen Variationsprinzip erhal-
ten kann.

3 Dabei bedeuten fe= of/3zk die gewohnliche Diffe-
rentiation und entsprechend z. B. §7%|; die kovariante
Differentiation nach zl
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Um dies zu zeigen, formen wir ganz allgemein
ein fiinfdimensionales Integral .

W= LYV —gdr

in ein vierdimensionales um. Zu diesem Zweck
fithren wir in (10) als neue Integrationsvariable
die affinen Koordinaten

(10)

F=d"X. .. X k=1,2,...4) (11

und eine beliebige Funktion
n=nX"...X% (12)
homogen vom ersten Grade in den X°...X* ein.

Wir wollen die iibliche Bezeichnungsweise?® ein®
fithren:

9: = ka; 911: =gki;g;bguv . (13)

Da die #* homogene Funktionen O-ten Grades
sind, gilt

nX =0. (14)
Aus (14) und (13) folgt dann auch
g X,=0. (15)
Fiir « gilt:
l’)i,LLX'L:n‘ (16)
Die Funktionaldeterminante
dm,xt...xb) m,,)
—— = Det 4
X ... XY 9%) (17)

1afit sich unter Beriicksichtigung von (14) und
(16) z.B. durch Addition geeigneter Vielfachen
der vier letzten Spalten zur ersten umformen zu:

4) ) AO
Sxy Ty

(18)

wobei |° die Minore in (17) zu = |, ist. Setzt man
fiir die affinen Koordinaten

dx'...dx* =drv, (19)
so wird
_ X\) 3
I/V:fLV——gj(dlogndv. (20)
‘Wir betrachten nun die Determinante
X,
D = Det ( ,i‘) 1)
(9u)

Genau wie bei (17) berechnet man unter Beriick-
sichtigung von (1) und (14) leicht:

AO

D=1J%- (22)

Setzt man zur Abkiirzung g =gk 9", so ist

(X" _ pyep| X D
= Det = Det Det| gV |= —.
()|~ @) 7 9
(25)
Aus (21) und (23) folgt sofort:
. 2
DI = J- Det|g"”| D
9 9

4
wenn man mit g die Determinante aus dem affinen
metrischen Tensor bezeichnet:

é - |91k| . (25)
Aus (24) und (22) folgt schliefBlich®:
. y, 4° X
V“‘QZ'}’XTVA‘Q. (26)
(26) in (20) eingesetzt ergibt:
W= fLJ" —§dvdlogy. (@)

Da der Integrand LJ'2 eine Invariante ist, ist er
homogen vom 0-ten Grade. Er hdngt daher nur von
den x* und nicht von = ab, so daB iiber 4 ausinte-
griert werden kann. Ist ' der Wert von = an der
oberen, n” der an der unteren Grenze des fiinf-
dimensionalen Bereiches, iiber den (27) zu inte-
grieren ist, so ist '/ homogen vom 0-ten Grade
und damit nur Funktion der z*. Es ist

7}/ A’\)/ X4/
?/:XIW:---ZTMZUT") (28)
4+ P. Jordan, Physik. Z. 45 [1944] (Xorrektur-

fahnen).
5 Da die erste Spalte in (17) oder (21) vor den
anderen nicht ausgezeichnet ist, ergibt sich:

AL

=a,

A0 1
X0 X'

——es e — ﬁ*
und hieraus 1’ =« X" und j”szaJ, d. h.

e=J"1AVX .
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das Verhiltnis der Koordinaten der oberen zur
unteren Grenze. Aus (27) erhilt man dann das
vierdimensionale Integral

V= LI log iV —4 dr.

Zu jedem Weltpunkt z* gehort ein Strahl X!

im fiinfdimensionalen X ¥ Raum. Das Gebiet, iiber
das in (27) zu integrieren ist, schneidet aus jedem
Strahl ein Stiick aus, und log A(z*) ist ein Mal
fiir die Lénge des ausgeschnittenen Stiickes, auch
dann, wenn dieses nicht zusammenhéngend ist.

Da in 2 nicht die Feldvariablen eingehen, sind
die beiden Variationsprobleme

—— 1 PSS 4
OfLYV —gdv=0;06[LJ"Y —§dr=0 (30)
dquivalent. Ist insbesondere L = R, so ergibt sich,
daf die Feldgleichungen (6) bis (8) auch eine
Folge des Variationsprinzips

SFRIMY —§dr—0

(29)

31

sind. Nun laBt sich B durch H‘, F,, und x aus-
driicken*: '

Relt+ L id FMF’”_"‘W;:;Df
+i@?ﬁ, (32)
so daf (31) iibergeht in:
o Vrlit+ 3" zpﬁj‘
+- ““Q)V—qw—- (33)

Als einfacheres weiteres Beispiel betrachten wir
das Variationsprinzip

0@ g u+apV —gdr=0, 39

wobei ¢ zu variieren ist. Man erhilt als Euler-
sche Gleichungen:

a=0b" (35)

e ”

Andererseits ist mit (34) das vierdimensionale
Variationsprinzip:

A ) ¥ (l(p)]/_._';d;t: 0.

(36)
aquivalent, woraus man erhélt:
a=J i, (37)
Durch Vergleich mit (35) folgt dann sofort:
uw k 1 J kbk N
b I =b & + B I'] ) (28)

womit die fiinfdimensionale Divergenz durch die
vierdimensionale ausgedriickt ist. Setzt man spe-

ziell b= w'lvg}"‘_‘, so folgt:

Ap = I/AMHW'(}"‘?:_— Y Ik cp”giz.-

Pt 2 J

g 10 i
= Adwp+ 5T apli_g“ , (39

wobei 4 der fiinfdimensionale und A* der vier-
dimensionale L.aplacesche Operator ist. Damit
haben wir eine neue, sehr vereinfachte Herleitung
der Gl. (5,21) aus Jordan®.

Die Arbeit entstand im Zusammenhang einer Unter-
suchung allgemeiner Feldgleichungen bei verédnder-
licher Gravitationskonstante, die vor dem Abschluf}
steht und fiir deren Anregung und Forderung ich
Hrn. Prof. Dr.Jordan herzlich danke.



