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Es wird gezeigt, daß sich jedes Gleichungssystem, das man als Eulersche Gleichungen 
eines fünfdimensionalen Variationsprinzips der projektiven Relativitätstheorie erhält, sich 
ebenfalls aus einem entsprechenden vierdimensionalen Variationsprinzip herleiten läßt. 

Nachdem die projektive Relativitätstheorie 
durch die Arbeiten von W. P a u l i 1 in ihrer 

Form einen gewissen Abschluß erreicht hatte, 
wurde neuerdings von P. J o r d a n 2 eine Erwei-
terung dieser Theorie gegeben, die darauf beruht, 
daß die projektive Invariante 

J = g!ivXlxXv, G k i V = 0 , 1 , . . . 4 ) (1) 

die bisher immer gleich 1 gesetzt wurde, als Funk-
tion der Koordinaten Xv angesehen wird- Es läßt 
sich dann J bis auf konstante Faktoren als Gravi-
tations-„Konstante" deuten, die dann keine Kon-
stante mehr ist, sondern eine Feldfunktion. Dies 
ist von besonderer Bedeutung für die Entwick-
lung des Weltalls2. 

Zur Aufstellung von Feldgleichungen geht man, 
wie es bisher in der allgemeinen Relativitäts-
theorie üblich war, von einem Variationsprinzip 

6f2dv = d f L V—g dt = 0 (2) 

aus, wobei L eine projektive Invariante, 8 = 
L V— g eine Invariantendichte ist. Wie üblich, ist 

g = Det Ig^yl'i dx = dX°dXl. ..dX\ (3) 

In (2) ist V̂  — g geschrieben, da g negativ ist. 
Setzt man in (2) speziell L = R, dem projektiven 

Krümmungsskalar, so erhält man als E u l e r -
sche Gleichungen des Variationsprinzips (2) die 
Feldgleichungen des Vakuums 2: 

tinv—'U 9 ß v R = ° > (4) 

1 W . P a u l i , Ann. Physik V, 18, 305 ff. [1933], 
2 P. J o r d a n u. Cl. M ü 11 e r , Z. Naturforschg. 2 a, 

1 [1947], 

wobei R a ,,der verjüngte Krümmungstensor ist. 
Durch Verjüngen von (4) folgt R = 0 und damit 
aus (4): 

ltßv = 0. (5) 

Durch Übergang zur affinen Geometrie findet 
man aus (5) die Feldgleichungen für die Gravi-
tationspotentiale gik, die elektromagnetischen Po-
tentiale cpt und die Gravitations-„Konstanteu /.3: 

i y. i 1 / x,, * , \ 
+ = (6) 

hl ^ _ kl 

+ 2 W ( 8 ) 

i 4 
Hierbei sind R und Rjk der Krümmungsskalar 
bzw. verjüngte Krümmungstensor der vierdimen-
sionalen affinen Geometrie. F k l sind die elektro-
magnetischen Feldstärken: 

Fhl = (Pl\*—<PhM' (9) 

Es ist nun bemerkenswert, daß man jedes 
Variationsprinzip (2) in ein vierdimensionales 
affines überführen kann, so daß man z. B. die 
Feldgleichungen (6) bis (8) auch direkt aus 
einem vierdimensionalen Variationsprinzip erhal-
ten kann. 

3 Dabei bedeuten f i f c= 3f/3xte die gewöhnliche Diffe-
rentiation und entsprechend z. B. die kovariante 
Differentiation nach xl. 
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Um dies zu zeigen, formen wir ganz allgemein Genau wie bei (17) berechnet man unter Berück-
sichtigung von (1) und (14) leicht: ein fünfdimensionales Integral . 

W= f L V^gdv (10) 

in ein vierdimensionales um. Zu diesem Zweck 
führen wir in (10) als neue Integrationsvariable 
die affinen Koordinaten 

xh=xh{X\...X*) (k= 1 , 2 , . . . 4 ) (11) 

und eine beliebige Funktion 

r) = r)(X°,...Xi) (12) 

homogen vom ersten Grade in den . . . X4 ein. 
Wir wollen die übliche Bezeichnungsweise4 ein-
führen : 

k k V i'iUV /iq\ 
9v = * 9k ~ 9ki 9ix9 - (13) 

Da die xh homogene Funktionen 0-ten Grades 
sind, gilt 

k VV n 
9vx =°-

Aus (14) und (13) folgt dann auch 

91^ = 0-
Für 7} gilt: 

V.ll 

Die Funktionaldeterminante 

( V 

(14) 

(15) 

(16) 

(17) 

läßt sich unter Berücksichtigung von (14) und 
(16) z. B. durch Addition geeigneter Vielfachen 
der vier letzten Spalten zur ersten umformen zu: 

x;\_._. . x'l _ _4_° 
~J(X\ ...X*) ~ >] X(> 

(18) 

wobei zJ° die Minore in (17) zu r, (0 ist. Setzt man 
für die affinen Koordinaten 

dx1 

so wird 
dx4 = dt, 

X° W=fLV-9~-r0-d\oSr1dv. 

Wir betrachten nun die Determinante 

I) = Det 

(19) 

(20) 

(21) 

D =J 
X0 

(22) 

Setzt man zur Abkürzung gh = g*gVß , so ist 

D' = Det Cr") 
{gH 0 

= Det Det 

Aus (21) und (23) folgt sofort: 

DD' = J.Det\gik\=^r = —-
9 9 

D 
9 
(23) 

(24) 

wenn man mit g die Determinante aus dem affinen 
metrischen Tensor bezeichnet: 

9 9ik 

Aus (24) und (22) folgt schließlich5: 

(26) in (20) eingesetzt ergibt: 

W = / L J ^V— gdx d log i] . 

(25) 

(26) 

(27) 

Da der Integrand LJ1/s eine Invariante ist, ist er 
homogen vom 0-ten Grade. Er hängt daher nur von 
den xk und nicht von •/) ab, so daß über t\ ausinte-
griert werden kann. Ist V der Wert von TJ an der 
oberen, t\" der an der unteren Grenze des fünf-
dimensionalen Bereiches, über den (27) zu inte-
grieren ist, so ist y\'/r\" homogen vom 0-ten Grade 
und damit nur Funktion der xk. Es ist 

X 
X 0 ' 

(28) 

4 P. J o r d a n , Physik. Z. 45 [1944] (Korrektur-
fahnen). 

5 Da die erste Spalte in (17) oder (21) vor den 
anderen nicht ausgezeichnet ist, ergibt sich: 

X° X* 

und hieraus Av — a X v und = d. b. 

a — J ^ 1 Av X . . 
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& f ( P < P ^ + ° 9 ) V - i d t = 0 , (34) das Verhältnis der Koordinaten der oberen zur 
unteren Grenze. Aus (27) erhält man dann das 
vierdimensionale Integral 

W—JL f k log X V—g dx . (29) 

g 

wobei (p zu variieren ist. Man erhält als E u l e r -
sche Gleichungen: 

Zu jedem Weltpunkt xk gehört ein Strahl qX> 
(85) 

im fünfdimensionalen X " Raum. Das Gebiet, über Andererseits ist mit (34) das vierdimensionale 
das in (27) zu integrieren ist, schneidet aus jedem Variationsprinzip: 
Strahl ein Stück aus, und log A(xk) ist ein Maß 
für die Länge des ausgeschnittenen Stückes, auch 
dann, wenn dieses nicht zusammenhängend ist. 

Da in l nicht die Feldvariablen eingehen, sind 
die beiden Variationsprobleme 

<5 / L V—g dx = 0 ; 6 / Lf'*V—Jdx = 0 (30) 

äquivalent. Ist insbesondere L = R, so ergibt sich, 
daß die Feldgleichungen (6) bis (8) auch eine 
Folge des Variationsprinzips 

df Bf1! V—g dv = 0 (31) 

sind. Nun läßt sich R durch R, Fkl und x aus-
drücken 4: 

R »4- 1 % F Fkl 

II k 112 
-2 k 

+ 

so daß (31) übergeht in: 

(32) 

i j i 

+ II k II 2 9 l 

2 x 2 

V— g dx = 0 . (33) 

d f JVa {bkcp ik + a cp)V—g dx = 0, (36) 

äquivalent, woraus man erhält: 

a=J,'i(fUbk)nk. (37) 

Durch Vergleich mit (35) folgt dann sofort: 

^ tl/( — ^ HA- o 
1 Jlkb 

J fF8) 

Als einfacheres weiteres Beispiel betrachten wir 
das Variationsprinzip 

womit die fünfdimensionale Divergenz durch die 
vierdimensionale ausgedrückt ist. Setzt man spe-
ziell btA=y)\vg*P, so folgt: 

wobei A der fünfdimensionale und A4 der vier-
dimensionale L a p 1 a c e sehe Operator ist. Damit 
haben wir eine neue, sehr vereinfachte Herleitung 
der Gl. (5, 21) aus J o r d a n 4 . 

Die Arbeit entstand im Zusammenhang einer Unter-
suchung allgemeiner Feldgleichungen bei veränder-
licher Gravitationskonstante, die vor dem Abschluß 
steht und für deren Anregung und Förderung ich 
Hrn. Prof. Dr. J o r d a n herzlich danke. 


